kcp.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. // Package kcp - A Fast and Reliable ARQ Protocol
  2. //
  3. // Acknowledgement:
  4. // skywind3000@github for inventing the KCP protocol
  5. // xtaci@github for translating to Golang
  6. package kcp
  7. import (
  8. "github.com/v2ray/v2ray-core/common/alloc"
  9. v2io "github.com/v2ray/v2ray-core/common/io"
  10. "github.com/v2ray/v2ray-core/common/log"
  11. )
  12. const (
  13. IKCP_RTO_NDL = 30 // no delay min rto
  14. IKCP_RTO_MIN = 100 // normal min rto
  15. IKCP_RTO_DEF = 200
  16. IKCP_RTO_MAX = 60000
  17. IKCP_CMD_PUSH = 81 // cmd: push data
  18. IKCP_CMD_ACK = 82 // cmd: ack
  19. IKCP_WND_SND = 32
  20. IKCP_WND_RCV = 32
  21. IKCP_MTU_DEF = 1350
  22. IKCP_ACK_FAST = 3
  23. IKCP_INTERVAL = 100
  24. IKCP_OVERHEAD = 24
  25. IKCP_DEADLINK = 20
  26. IKCP_THRESH_INIT = 2
  27. IKCP_THRESH_MIN = 2
  28. IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
  29. IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
  30. )
  31. func _imin_(a, b uint32) uint32 {
  32. if a <= b {
  33. return a
  34. } else {
  35. return b
  36. }
  37. }
  38. func _imax_(a, b uint32) uint32 {
  39. if a >= b {
  40. return a
  41. } else {
  42. return b
  43. }
  44. }
  45. func _itimediff(later, earlier uint32) int32 {
  46. return (int32)(later - earlier)
  47. }
  48. type State int
  49. const (
  50. StateActive State = 0
  51. StateReadyToClose State = 1
  52. StatePeerClosed State = 2
  53. StateTerminating State = 3
  54. StateTerminated State = 4
  55. )
  56. // KCP defines a single KCP connection
  57. type KCP struct {
  58. conv uint16
  59. state State
  60. stateBeginTime uint32
  61. lastIncomingTime uint32
  62. lastPayloadTime uint32
  63. sendingUpdated bool
  64. receivingUpdated bool
  65. lastPingTime uint32
  66. mtu, mss uint32
  67. snd_una, snd_nxt, rcv_nxt uint32
  68. ts_recent, ts_lastack, ssthresh uint32
  69. rx_rttvar, rx_srtt, rx_rto uint32
  70. snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
  71. current, interval, ts_flush, xmit uint32
  72. updated bool
  73. ts_probe, probe_wait uint32
  74. dead_link, incr uint32
  75. snd_queue *SendingQueue
  76. rcv_queue []*DataSegment
  77. snd_buf []*DataSegment
  78. rcv_buf *ReceivingWindow
  79. acklist *ACKList
  80. fastresend int32
  81. congestionControl bool
  82. output *SegmentWriter
  83. }
  84. // NewKCP create a new kcp control object, 'conv' must equal in two endpoint
  85. // from the same connection.
  86. func NewKCP(conv uint16, mtu uint32, sendingWindowSize uint32, receivingWindowSize uint32, sendingQueueSize uint32, output v2io.Writer) *KCP {
  87. log.Debug("KCP|Core: creating KCP ", conv)
  88. kcp := new(KCP)
  89. kcp.conv = conv
  90. kcp.snd_wnd = sendingWindowSize
  91. kcp.rcv_wnd = receivingWindowSize
  92. kcp.rmt_wnd = IKCP_WND_RCV
  93. kcp.mtu = mtu
  94. kcp.mss = kcp.mtu - DataSegmentOverhead
  95. kcp.rx_rto = IKCP_RTO_DEF
  96. kcp.interval = IKCP_INTERVAL
  97. kcp.ts_flush = IKCP_INTERVAL
  98. kcp.ssthresh = IKCP_THRESH_INIT
  99. kcp.dead_link = IKCP_DEADLINK
  100. kcp.output = NewSegmentWriter(mtu, output)
  101. kcp.rcv_buf = NewReceivingWindow(receivingWindowSize)
  102. kcp.snd_queue = NewSendingQueue(sendingQueueSize)
  103. kcp.acklist = new(ACKList)
  104. return kcp
  105. }
  106. func (kcp *KCP) HandleOption(opt SegmentOption) {
  107. if (opt & SegmentOptionClose) == SegmentOptionClose {
  108. kcp.OnPeerClosed()
  109. }
  110. }
  111. func (kcp *KCP) OnPeerClosed() {
  112. if kcp.state == StateReadyToClose {
  113. kcp.state = StateTerminating
  114. kcp.stateBeginTime = kcp.current
  115. }
  116. if kcp.state == StateActive {
  117. kcp.ClearSendQueue()
  118. kcp.state = StatePeerClosed
  119. kcp.stateBeginTime = kcp.current
  120. }
  121. }
  122. func (kcp *KCP) OnClose() {
  123. if kcp.state == StateActive {
  124. kcp.state = StateReadyToClose
  125. kcp.stateBeginTime = kcp.current
  126. }
  127. if kcp.state == StatePeerClosed {
  128. kcp.state = StateTerminating
  129. kcp.stateBeginTime = kcp.current
  130. }
  131. }
  132. // Recv is user/upper level recv: returns size, returns below zero for EAGAIN
  133. func (kcp *KCP) Recv(buffer []byte) (n int) {
  134. if len(kcp.rcv_queue) == 0 {
  135. return -1
  136. }
  137. // merge fragment
  138. count := 0
  139. for _, seg := range kcp.rcv_queue {
  140. dataLen := seg.Data.Len()
  141. if dataLen > len(buffer) {
  142. break
  143. }
  144. copy(buffer, seg.Data.Value)
  145. seg.Release()
  146. buffer = buffer[dataLen:]
  147. n += dataLen
  148. count++
  149. }
  150. kcp.rcv_queue = kcp.rcv_queue[count:]
  151. kcp.DumpReceivingBuf()
  152. return
  153. }
  154. // DumpReceivingBuf moves available data from rcv_buf -> rcv_queue
  155. // @Private
  156. func (kcp *KCP) DumpReceivingBuf() {
  157. for {
  158. seg := kcp.rcv_buf.RemoveFirst()
  159. if seg == nil {
  160. break
  161. }
  162. kcp.rcv_queue = append(kcp.rcv_queue, seg)
  163. kcp.rcv_buf.Advance()
  164. kcp.rcv_nxt++
  165. }
  166. }
  167. // Send is user/upper level send, returns below zero for error
  168. func (kcp *KCP) Send(buffer []byte) int {
  169. nBytes := 0
  170. for len(buffer) > 0 && !kcp.snd_queue.IsFull() {
  171. var size int
  172. if len(buffer) > int(kcp.mss) {
  173. size = int(kcp.mss)
  174. } else {
  175. size = len(buffer)
  176. }
  177. seg := &DataSegment{
  178. Data: alloc.NewSmallBuffer().Clear().Append(buffer[:size]),
  179. }
  180. kcp.snd_queue.Push(seg)
  181. buffer = buffer[size:]
  182. nBytes += size
  183. }
  184. return nBytes
  185. }
  186. // https://tools.ietf.org/html/rfc6298
  187. func (kcp *KCP) update_ack(rtt int32) {
  188. var rto uint32 = 0
  189. if kcp.rx_srtt == 0 {
  190. kcp.rx_srtt = uint32(rtt)
  191. kcp.rx_rttvar = uint32(rtt) / 2
  192. } else {
  193. delta := rtt - int32(kcp.rx_srtt)
  194. if delta < 0 {
  195. delta = -delta
  196. }
  197. kcp.rx_rttvar = (3*kcp.rx_rttvar + uint32(delta)) / 4
  198. kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
  199. if kcp.rx_srtt < kcp.interval {
  200. kcp.rx_srtt = kcp.interval
  201. }
  202. }
  203. rto = kcp.rx_srtt + _imax_(kcp.interval, 4*kcp.rx_rttvar)
  204. if rto > IKCP_RTO_MAX {
  205. rto = IKCP_RTO_MAX
  206. }
  207. kcp.rx_rto = rto * 3 / 2
  208. }
  209. func (kcp *KCP) shrink_buf() {
  210. prevUna := kcp.snd_una
  211. if len(kcp.snd_buf) > 0 {
  212. seg := kcp.snd_buf[0]
  213. kcp.snd_una = seg.Number
  214. } else {
  215. kcp.snd_una = kcp.snd_nxt
  216. }
  217. if kcp.snd_una != prevUna {
  218. kcp.sendingUpdated = true
  219. }
  220. }
  221. func (kcp *KCP) parse_ack(sn uint32) {
  222. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  223. return
  224. }
  225. for k, seg := range kcp.snd_buf {
  226. if sn == seg.Number {
  227. kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
  228. seg.Release()
  229. break
  230. }
  231. if _itimediff(sn, seg.Number) < 0 {
  232. break
  233. }
  234. }
  235. }
  236. func (kcp *KCP) parse_fastack(sn uint32) {
  237. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  238. return
  239. }
  240. for _, seg := range kcp.snd_buf {
  241. if _itimediff(sn, seg.Number) < 0 {
  242. break
  243. } else if sn != seg.Number {
  244. seg.ackSkipped++
  245. }
  246. }
  247. }
  248. func (kcp *KCP) HandleReceivingNext(receivingNext uint32) {
  249. count := 0
  250. for _, seg := range kcp.snd_buf {
  251. if _itimediff(receivingNext, seg.Number) > 0 {
  252. seg.Release()
  253. count++
  254. } else {
  255. break
  256. }
  257. }
  258. kcp.snd_buf = kcp.snd_buf[count:]
  259. }
  260. func (kcp *KCP) HandleSendingNext(sendingNext uint32) {
  261. kcp.acklist.Clear(sendingNext)
  262. kcp.receivingUpdated = true
  263. }
  264. func (kcp *KCP) parse_data(newseg *DataSegment) {
  265. sn := newseg.Number
  266. if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
  267. _itimediff(sn, kcp.rcv_nxt) < 0 {
  268. return
  269. }
  270. idx := sn - kcp.rcv_nxt
  271. if !kcp.rcv_buf.Set(idx, newseg) {
  272. newseg.Release()
  273. }
  274. kcp.DumpReceivingBuf()
  275. }
  276. // Input when you received a low level packet (eg. UDP packet), call it
  277. func (kcp *KCP) Input(data []byte) int {
  278. kcp.lastIncomingTime = kcp.current
  279. var seg ISegment
  280. var maxack uint32
  281. var flag int
  282. for {
  283. seg, data = ReadSegment(data)
  284. if seg == nil {
  285. break
  286. }
  287. switch seg := seg.(type) {
  288. case *DataSegment:
  289. kcp.HandleOption(seg.Opt)
  290. kcp.HandleSendingNext(seg.SendingNext)
  291. kcp.shrink_buf()
  292. kcp.acklist.Add(seg.Number, seg.Timestamp)
  293. kcp.parse_data(seg)
  294. kcp.lastPayloadTime = kcp.current
  295. case *ACKSegment:
  296. kcp.HandleOption(seg.Opt)
  297. if kcp.rmt_wnd < seg.ReceivingWindow {
  298. kcp.rmt_wnd = seg.ReceivingWindow
  299. }
  300. kcp.HandleReceivingNext(seg.ReceivingNext)
  301. for i := 0; i < int(seg.Count); i++ {
  302. ts := seg.TimestampList[i]
  303. sn := seg.NumberList[i]
  304. if _itimediff(kcp.current, ts) >= 0 {
  305. kcp.update_ack(_itimediff(kcp.current, ts))
  306. }
  307. kcp.parse_ack(sn)
  308. if flag == 0 {
  309. flag = 1
  310. maxack = sn
  311. } else if _itimediff(sn, maxack) > 0 {
  312. maxack = sn
  313. }
  314. }
  315. kcp.shrink_buf()
  316. kcp.lastPayloadTime = kcp.current
  317. case *CmdOnlySegment:
  318. kcp.HandleOption(seg.Opt)
  319. if seg.Cmd == SegmentCommandTerminated {
  320. if kcp.state == StateActive ||
  321. kcp.state == StateReadyToClose ||
  322. kcp.state == StatePeerClosed {
  323. kcp.state = StateTerminating
  324. kcp.stateBeginTime = kcp.current
  325. } else if kcp.state == StateTerminating {
  326. kcp.state = StateTerminated
  327. kcp.stateBeginTime = kcp.current
  328. }
  329. }
  330. kcp.HandleReceivingNext(seg.ReceivinNext)
  331. kcp.HandleSendingNext(seg.SendingNext)
  332. default:
  333. }
  334. }
  335. if flag != 0 {
  336. kcp.parse_fastack(maxack)
  337. }
  338. return 0
  339. }
  340. // flush pending data
  341. func (kcp *KCP) flush() {
  342. if kcp.state == StateTerminated {
  343. return
  344. }
  345. if kcp.state == StateActive && _itimediff(kcp.current, kcp.lastPayloadTime) >= 30000 {
  346. kcp.OnClose()
  347. }
  348. if kcp.state == StateTerminating {
  349. kcp.output.Write(&CmdOnlySegment{
  350. Conv: kcp.conv,
  351. Cmd: SegmentCommandTerminated,
  352. })
  353. kcp.output.Flush()
  354. if _itimediff(kcp.current, kcp.stateBeginTime) > 8000 {
  355. kcp.state = StateTerminated
  356. kcp.stateBeginTime = kcp.current
  357. }
  358. return
  359. }
  360. if kcp.state == StateReadyToClose && _itimediff(kcp.current, kcp.stateBeginTime) > 15000 {
  361. kcp.state = StateTerminating
  362. kcp.stateBeginTime = kcp.current
  363. }
  364. current := kcp.current
  365. //lost := false
  366. //var seg Segment
  367. //seg.conv = kcp.conv
  368. //seg.cmd = IKCP_CMD_ACK
  369. //seg.wnd = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
  370. //seg.una = kcp.rcv_nxt
  371. // flush acknowledges
  372. ackSeg := kcp.acklist.AsSegment()
  373. if ackSeg != nil {
  374. ackSeg.Conv = kcp.conv
  375. ackSeg.ReceivingWindow = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
  376. ackSeg.ReceivingNext = kcp.rcv_nxt
  377. kcp.output.Write(ackSeg)
  378. kcp.receivingUpdated = false
  379. }
  380. // calculate window size
  381. cwnd := _imin_(kcp.snd_una+kcp.snd_wnd, kcp.rmt_wnd)
  382. if kcp.congestionControl {
  383. cwnd = _imin_(kcp.cwnd, cwnd)
  384. }
  385. for !kcp.snd_queue.IsEmpty() && _itimediff(kcp.snd_nxt, cwnd) < 0 {
  386. seg := kcp.snd_queue.Pop()
  387. seg.Conv = kcp.conv
  388. seg.Number = kcp.snd_nxt
  389. seg.timeout = current
  390. seg.ackSkipped = 0
  391. seg.transmit = 0
  392. kcp.snd_buf = append(kcp.snd_buf, seg)
  393. kcp.snd_nxt++
  394. }
  395. // calculate resent
  396. resent := uint32(kcp.fastresend)
  397. if kcp.fastresend <= 0 {
  398. resent = 0xffffffff
  399. }
  400. // flush data segments
  401. for _, segment := range kcp.snd_buf {
  402. needsend := false
  403. if segment.transmit == 0 {
  404. needsend = true
  405. segment.transmit++
  406. segment.timeout = current + kcp.rx_rto
  407. } else if _itimediff(current, segment.timeout) >= 0 {
  408. needsend = true
  409. segment.transmit++
  410. kcp.xmit++
  411. segment.timeout = current + kcp.rx_rto
  412. //lost = true
  413. } else if segment.ackSkipped >= resent {
  414. needsend = true
  415. segment.transmit++
  416. segment.ackSkipped = 0
  417. segment.timeout = current + kcp.rx_rto
  418. }
  419. if needsend {
  420. segment.Timestamp = current
  421. segment.SendingNext = kcp.snd_una
  422. segment.Opt = 0
  423. if kcp.state == StateReadyToClose {
  424. segment.Opt = SegmentOptionClose
  425. }
  426. kcp.output.Write(segment)
  427. kcp.sendingUpdated = false
  428. if segment.transmit >= kcp.dead_link {
  429. kcp.state = 0xFFFFFFFF
  430. }
  431. }
  432. }
  433. if kcp.sendingUpdated || kcp.receivingUpdated || _itimediff(kcp.current, kcp.lastPingTime) >= 5000 {
  434. seg := &CmdOnlySegment{
  435. Conv: kcp.conv,
  436. Cmd: SegmentCommandPing,
  437. ReceivinNext: kcp.rcv_nxt,
  438. SendingNext: kcp.snd_una,
  439. }
  440. if kcp.state == StateReadyToClose {
  441. seg.Opt = SegmentOptionClose
  442. }
  443. kcp.output.Write(seg)
  444. kcp.lastPingTime = kcp.current
  445. kcp.sendingUpdated = false
  446. kcp.receivingUpdated = false
  447. }
  448. // flash remain segments
  449. kcp.output.Flush()
  450. // update ssthresh
  451. // rate halving, https://tools.ietf.org/html/rfc6937
  452. /*
  453. if change != 0 {
  454. inflight := kcp.snd_nxt - kcp.snd_una
  455. kcp.ssthresh = inflight / 2
  456. if kcp.ssthresh < IKCP_THRESH_MIN {
  457. kcp.ssthresh = IKCP_THRESH_MIN
  458. }
  459. kcp.cwnd = kcp.ssthresh + resent
  460. kcp.incr = kcp.cwnd * kcp.mss
  461. }*/
  462. // congestion control, https://tools.ietf.org/html/rfc5681
  463. /*
  464. if lost {
  465. kcp.ssthresh = cwnd / 2
  466. if kcp.ssthresh < IKCP_THRESH_MIN {
  467. kcp.ssthresh = IKCP_THRESH_MIN
  468. }
  469. kcp.cwnd = 1
  470. kcp.incr = kcp.mss
  471. }
  472. if kcp.cwnd < 1 {
  473. kcp.cwnd = 1
  474. kcp.incr = kcp.mss
  475. }*/
  476. }
  477. // Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
  478. // ikcp_check when to call it again (without ikcp_input/_send calling).
  479. // 'current' - current timestamp in millisec.
  480. func (kcp *KCP) Update(current uint32) {
  481. var slap int32
  482. kcp.current = current
  483. if !kcp.updated {
  484. kcp.updated = true
  485. kcp.ts_flush = kcp.current
  486. }
  487. slap = _itimediff(kcp.current, kcp.ts_flush)
  488. if slap >= 10000 || slap < -10000 {
  489. kcp.ts_flush = kcp.current
  490. slap = 0
  491. }
  492. if slap >= 0 {
  493. kcp.ts_flush += kcp.interval
  494. if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
  495. kcp.ts_flush = kcp.current + kcp.interval
  496. }
  497. kcp.flush()
  498. }
  499. }
  500. // NoDelay options
  501. // fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
  502. // nodelay: 0:disable(default), 1:enable
  503. // interval: internal update timer interval in millisec, default is 100ms
  504. // resend: 0:disable fast resend(default), 1:enable fast resend
  505. // nc: 0:normal congestion control(default), 1:disable congestion control
  506. func (kcp *KCP) NoDelay(interval uint32, resend int, congestionControl bool) int {
  507. kcp.interval = interval
  508. if resend >= 0 {
  509. kcp.fastresend = int32(resend)
  510. }
  511. kcp.congestionControl = congestionControl
  512. return 0
  513. }
  514. // WaitSnd gets how many packet is waiting to be sent
  515. func (kcp *KCP) WaitSnd() uint32 {
  516. return uint32(len(kcp.snd_buf)) + kcp.snd_queue.Len()
  517. }
  518. func (this *KCP) ClearSendQueue() {
  519. this.snd_queue.Clear()
  520. for _, seg := range this.snd_buf {
  521. seg.Release()
  522. }
  523. this.snd_buf = nil
  524. }