| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573 | // Package kcp - A Fast and Reliable ARQ Protocol//// Acknowledgement://    skywind3000@github for inventing the KCP protocol//    xtaci@github for translating to Golangpackage kcpimport (	"github.com/v2ray/v2ray-core/common/alloc"	v2io "github.com/v2ray/v2ray-core/common/io"	"github.com/v2ray/v2ray-core/common/log")const (	IKCP_RTO_NDL     = 30  // no delay min rto	IKCP_RTO_MIN     = 100 // normal min rto	IKCP_RTO_DEF     = 200	IKCP_RTO_MAX     = 60000	IKCP_CMD_PUSH    = 81 // cmd: push data	IKCP_CMD_ACK     = 82 // cmd: ack	IKCP_WND_SND     = 32	IKCP_WND_RCV     = 32	IKCP_MTU_DEF     = 1350	IKCP_ACK_FAST    = 3	IKCP_INTERVAL    = 100	IKCP_OVERHEAD    = 24	IKCP_DEADLINK    = 20	IKCP_THRESH_INIT = 2	IKCP_THRESH_MIN  = 2	IKCP_PROBE_INIT  = 7000   // 7 secs to probe window size	IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window)func _imin_(a, b uint32) uint32 {	if a <= b {		return a	} else {		return b	}}func _imax_(a, b uint32) uint32 {	if a >= b {		return a	} else {		return b	}}func _itimediff(later, earlier uint32) int32 {	return (int32)(later - earlier)}type State intconst (	StateActive       State = 0	StateReadyToClose State = 1	StatePeerClosed   State = 2	StateTerminating  State = 3	StateTerminated   State = 4)// KCP defines a single KCP connectiontype KCP struct {	conv             uint16	state            State	stateBeginTime   uint32	lastIncomingTime uint32	lastPayloadTime  uint32	sendingUpdated   bool	receivingUpdated bool	lastPingTime     uint32	mtu, mss                               uint32	snd_una, snd_nxt, rcv_nxt              uint32	ts_recent, ts_lastack, ssthresh        uint32	rx_rttvar, rx_srtt, rx_rto             uint32	snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32	current, interval, ts_flush, xmit      uint32	updated                                bool	ts_probe, probe_wait                   uint32	dead_link, incr                        uint32	snd_queue *SendingQueue	rcv_queue []*DataSegment	snd_buf   []*DataSegment	rcv_buf   *ReceivingWindow	acklist *ACKList	fastresend        int32	congestionControl bool	output            *SegmentWriter}// NewKCP create a new kcp control object, 'conv' must equal in two endpoint// from the same connection.func NewKCP(conv uint16, mtu uint32, sendingWindowSize uint32, receivingWindowSize uint32, sendingQueueSize uint32, output v2io.Writer) *KCP {	log.Debug("KCP|Core: creating KCP ", conv)	kcp := new(KCP)	kcp.conv = conv	kcp.snd_wnd = sendingWindowSize	kcp.rcv_wnd = receivingWindowSize	kcp.rmt_wnd = IKCP_WND_RCV	kcp.mtu = mtu	kcp.mss = kcp.mtu - DataSegmentOverhead	kcp.rx_rto = IKCP_RTO_DEF	kcp.interval = IKCP_INTERVAL	kcp.ts_flush = IKCP_INTERVAL	kcp.ssthresh = IKCP_THRESH_INIT	kcp.dead_link = IKCP_DEADLINK	kcp.output = NewSegmentWriter(mtu, output)	kcp.rcv_buf = NewReceivingWindow(receivingWindowSize)	kcp.snd_queue = NewSendingQueue(sendingQueueSize)	kcp.acklist = new(ACKList)	kcp.cwnd = kcp.snd_wnd	return kcp}func (kcp *KCP) HandleOption(opt SegmentOption) {	if (opt & SegmentOptionClose) == SegmentOptionClose {		kcp.OnPeerClosed()	}}func (kcp *KCP) OnPeerClosed() {	if kcp.state == StateReadyToClose {		kcp.state = StateTerminating		kcp.stateBeginTime = kcp.current	}	if kcp.state == StateActive {		kcp.ClearSendQueue()		kcp.state = StatePeerClosed		kcp.stateBeginTime = kcp.current	}}func (kcp *KCP) OnClose() {	if kcp.state == StateActive {		kcp.state = StateReadyToClose		kcp.stateBeginTime = kcp.current	}	if kcp.state == StatePeerClosed {		kcp.state = StateTerminating		kcp.stateBeginTime = kcp.current	}}// Recv is user/upper level recv: returns size, returns below zero for EAGAINfunc (kcp *KCP) Recv(buffer []byte) (n int) {	if len(kcp.rcv_queue) == 0 {		return -1	}	// merge fragment	count := 0	for _, seg := range kcp.rcv_queue {		dataLen := seg.Data.Len()		if dataLen > len(buffer) {			break		}		copy(buffer, seg.Data.Value)		seg.Release()		buffer = buffer[dataLen:]		n += dataLen		count++	}	kcp.rcv_queue = kcp.rcv_queue[count:]	kcp.DumpReceivingBuf()	return}// DumpReceivingBuf moves available data from rcv_buf -> rcv_queue// @Privatefunc (kcp *KCP) DumpReceivingBuf() {	for {		seg := kcp.rcv_buf.RemoveFirst()		if seg == nil {			break		}		kcp.rcv_queue = append(kcp.rcv_queue, seg)		kcp.rcv_buf.Advance()		kcp.rcv_nxt++	}}// Send is user/upper level send, returns below zero for errorfunc (kcp *KCP) Send(buffer []byte) int {	nBytes := 0	for len(buffer) > 0 && !kcp.snd_queue.IsFull() {		var size int		if len(buffer) > int(kcp.mss) {			size = int(kcp.mss)		} else {			size = len(buffer)		}		seg := &DataSegment{			Data: alloc.NewSmallBuffer().Clear().Append(buffer[:size]),		}		kcp.snd_queue.Push(seg)		buffer = buffer[size:]		nBytes += size	}	return nBytes}// https://tools.ietf.org/html/rfc6298func (kcp *KCP) update_ack(rtt int32) {	var rto uint32 = 0	if kcp.rx_srtt == 0 {		kcp.rx_srtt = uint32(rtt)		kcp.rx_rttvar = uint32(rtt) / 2	} else {		delta := rtt - int32(kcp.rx_srtt)		if delta < 0 {			delta = -delta		}		kcp.rx_rttvar = (3*kcp.rx_rttvar + uint32(delta)) / 4		kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8		if kcp.rx_srtt < kcp.interval {			kcp.rx_srtt = kcp.interval		}	}	rto = kcp.rx_srtt + _imax_(kcp.interval, 4*kcp.rx_rttvar)	if rto > IKCP_RTO_MAX {		rto = IKCP_RTO_MAX	}	kcp.rx_rto = rto * 3 / 2}func (kcp *KCP) shrink_buf() {	prevUna := kcp.snd_una	if len(kcp.snd_buf) > 0 {		seg := kcp.snd_buf[0]		kcp.snd_una = seg.Number	} else {		kcp.snd_una = kcp.snd_nxt	}	if kcp.snd_una != prevUna {		kcp.sendingUpdated = true	}}func (kcp *KCP) parse_ack(sn uint32) {	if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {		return	}	for k, seg := range kcp.snd_buf {		if sn == seg.Number {			kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)			seg.Release()			break		}		if _itimediff(sn, seg.Number) < 0 {			break		}	}}func (kcp *KCP) parse_fastack(sn uint32) {	if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {		return	}	for _, seg := range kcp.snd_buf {		if _itimediff(sn, seg.Number) < 0 {			break		} else if sn != seg.Number {			seg.ackSkipped++		}	}}func (kcp *KCP) HandleReceivingNext(receivingNext uint32) {	count := 0	for _, seg := range kcp.snd_buf {		if _itimediff(receivingNext, seg.Number) > 0 {			seg.Release()			count++		} else {			break		}	}	kcp.snd_buf = kcp.snd_buf[count:]}func (kcp *KCP) HandleSendingNext(sendingNext uint32) {	kcp.acklist.Clear(sendingNext)	kcp.receivingUpdated = true}func (kcp *KCP) parse_data(newseg *DataSegment) {	sn := newseg.Number	if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||		_itimediff(sn, kcp.rcv_nxt) < 0 {		return	}	idx := sn - kcp.rcv_nxt	if !kcp.rcv_buf.Set(idx, newseg) {		newseg.Release()	}	kcp.DumpReceivingBuf()}// Input when you received a low level packet (eg. UDP packet), call itfunc (kcp *KCP) Input(data []byte) int {	kcp.lastIncomingTime = kcp.current	var seg ISegment	var maxack uint32	var flag int	for {		seg, data = ReadSegment(data)		if seg == nil {			break		}		switch seg := seg.(type) {		case *DataSegment:			kcp.HandleOption(seg.Opt)			kcp.HandleSendingNext(seg.SendingNext)			kcp.shrink_buf()			kcp.acklist.Add(seg.Number, seg.Timestamp)			kcp.parse_data(seg)			kcp.lastPayloadTime = kcp.current		case *ACKSegment:			kcp.HandleOption(seg.Opt)			if kcp.rmt_wnd < seg.ReceivingWindow {				kcp.rmt_wnd = seg.ReceivingWindow			}			kcp.HandleReceivingNext(seg.ReceivingNext)			for i := 0; i < int(seg.Count); i++ {				ts := seg.TimestampList[i]				sn := seg.NumberList[i]				if _itimediff(kcp.current, ts) >= 0 {					kcp.update_ack(_itimediff(kcp.current, ts))				}				kcp.parse_ack(sn)				if flag == 0 {					flag = 1					maxack = sn				} else if _itimediff(sn, maxack) > 0 {					maxack = sn				}			}			kcp.shrink_buf()			kcp.lastPayloadTime = kcp.current		case *CmdOnlySegment:			kcp.HandleOption(seg.Opt)			if seg.Cmd == SegmentCommandTerminated {				if kcp.state == StateActive ||					kcp.state == StateReadyToClose ||					kcp.state == StatePeerClosed {					kcp.state = StateTerminating					kcp.stateBeginTime = kcp.current				} else if kcp.state == StateTerminating {					kcp.state = StateTerminated					kcp.stateBeginTime = kcp.current				}			}			kcp.HandleReceivingNext(seg.ReceivinNext)			kcp.HandleSendingNext(seg.SendingNext)		default:		}	}	if flag != 0 {		kcp.parse_fastack(maxack)	}	return 0}// flush pending datafunc (kcp *KCP) flush() {	if kcp.state == StateTerminated {		return	}	if kcp.state == StateActive && _itimediff(kcp.current, kcp.lastPayloadTime) >= 30000 {		kcp.OnClose()	}	if kcp.state == StateTerminating {		kcp.output.Write(&CmdOnlySegment{			Conv: kcp.conv,			Cmd:  SegmentCommandTerminated,		})		kcp.output.Flush()		if _itimediff(kcp.current, kcp.stateBeginTime) > 8000 {			kcp.state = StateTerminated			kcp.stateBeginTime = kcp.current		}		return	}	if kcp.state == StateReadyToClose && _itimediff(kcp.current, kcp.stateBeginTime) > 15000 {		kcp.state = StateTerminating		kcp.stateBeginTime = kcp.current	}	current := kcp.current	lost := false	// flush acknowledges	ackSeg := kcp.acklist.AsSegment()	if ackSeg != nil {		ackSeg.Conv = kcp.conv		ackSeg.ReceivingWindow = uint32(kcp.rcv_nxt + kcp.rcv_wnd)		ackSeg.ReceivingNext = kcp.rcv_nxt		kcp.output.Write(ackSeg)		kcp.receivingUpdated = false	}	// calculate window size	cwnd := _imin_(kcp.snd_una+kcp.snd_wnd, kcp.rmt_wnd)	if kcp.congestionControl {		cwnd = _imin_(kcp.cwnd, cwnd)	}	for !kcp.snd_queue.IsEmpty() && _itimediff(kcp.snd_nxt, cwnd) < 0 {		seg := kcp.snd_queue.Pop()		seg.Conv = kcp.conv		seg.Number = kcp.snd_nxt		seg.timeout = current		seg.ackSkipped = 0		seg.transmit = 0		kcp.snd_buf = append(kcp.snd_buf, seg)		kcp.snd_nxt++	}	// calculate resent	resent := uint32(kcp.fastresend)	if kcp.fastresend <= 0 {		resent = 0xffffffff	}	// flush data segments	for _, segment := range kcp.snd_buf {		needsend := false		if segment.transmit == 0 {			needsend = true			segment.transmit++			segment.timeout = current + kcp.rx_rto		} else if _itimediff(current, segment.timeout) >= 0 {			needsend = true			segment.transmit++			kcp.xmit++			segment.timeout = current + kcp.rx_rto			lost = true		} else if segment.ackSkipped >= resent {			needsend = true			segment.transmit++			segment.ackSkipped = 0			segment.timeout = current + kcp.rx_rto			lost = true		}		if needsend {			segment.Timestamp = current			segment.SendingNext = kcp.snd_una			segment.Opt = 0			if kcp.state == StateReadyToClose {				segment.Opt = SegmentOptionClose			}			kcp.output.Write(segment)			kcp.sendingUpdated = false			if segment.transmit >= kcp.dead_link {				kcp.state = 0xFFFFFFFF			}		}	}	if kcp.sendingUpdated || kcp.receivingUpdated || _itimediff(kcp.current, kcp.lastPingTime) >= 5000 {		seg := &CmdOnlySegment{			Conv:         kcp.conv,			Cmd:          SegmentCommandPing,			ReceivinNext: kcp.rcv_nxt,			SendingNext:  kcp.snd_una,		}		if kcp.state == StateReadyToClose {			seg.Opt = SegmentOptionClose		}		kcp.output.Write(seg)		kcp.lastPingTime = kcp.current		kcp.sendingUpdated = false		kcp.receivingUpdated = false	}	// flash remain segments	kcp.output.Flush()	if kcp.congestionControl {		if lost {			kcp.cwnd = 3 * kcp.cwnd / 4		} else {			kcp.cwnd += kcp.cwnd / 4		}		if kcp.cwnd < 4 {			kcp.cwnd = 4		}		if kcp.cwnd > kcp.snd_wnd {			kcp.cwnd = kcp.snd_wnd		}	}}// Update updates state (call it repeatedly, every 10ms-100ms), or you can ask// ikcp_check when to call it again (without ikcp_input/_send calling).// 'current' - current timestamp in millisec.func (kcp *KCP) Update(current uint32) {	var slap int32	kcp.current = current	if !kcp.updated {		kcp.updated = true		kcp.ts_flush = kcp.current	}	slap = _itimediff(kcp.current, kcp.ts_flush)	if slap >= 10000 || slap < -10000 {		kcp.ts_flush = kcp.current		slap = 0	}	if slap >= 0 {		kcp.ts_flush += kcp.interval		if _itimediff(kcp.current, kcp.ts_flush) >= 0 {			kcp.ts_flush = kcp.current + kcp.interval		}		kcp.flush()	}}// NoDelay options// fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)// nodelay: 0:disable(default), 1:enable// interval: internal update timer interval in millisec, default is 100ms// resend: 0:disable fast resend(default), 1:enable fast resend// nc: 0:normal congestion control(default), 1:disable congestion controlfunc (kcp *KCP) NoDelay(interval uint32, resend int, congestionControl bool) int {	kcp.interval = interval	if resend >= 0 {		kcp.fastresend = int32(resend)	}	kcp.congestionControl = congestionControl	return 0}// WaitSnd gets how many packet is waiting to be sentfunc (kcp *KCP) WaitSnd() uint32 {	return uint32(len(kcp.snd_buf)) + kcp.snd_queue.Len()}func (this *KCP) ClearSendQueue() {	this.snd_queue.Clear()	for _, seg := range this.snd_buf {		seg.Release()	}	this.snd_buf = nil}
 |