sniff.go 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291
  1. package quic
  2. import (
  3. "crypto"
  4. "crypto/aes"
  5. "crypto/tls"
  6. "encoding/binary"
  7. "io"
  8. "github.com/quic-go/quic-go/quicvarint"
  9. "golang.org/x/crypto/hkdf"
  10. "github.com/v2fly/v2ray-core/v5/common"
  11. "github.com/v2fly/v2ray-core/v5/common/buf"
  12. "github.com/v2fly/v2ray-core/v5/common/bytespool"
  13. "github.com/v2fly/v2ray-core/v5/common/errors"
  14. "github.com/v2fly/v2ray-core/v5/common/protocol"
  15. ptls "github.com/v2fly/v2ray-core/v5/common/protocol/tls"
  16. )
  17. type SniffHeader struct {
  18. domain string
  19. }
  20. func (s SniffHeader) Protocol() string {
  21. return "quic"
  22. }
  23. func (s SniffHeader) Domain() string {
  24. return s.domain
  25. }
  26. const (
  27. versionDraft29 uint32 = 0xff00001d
  28. version1 uint32 = 0x1
  29. )
  30. var (
  31. quicSaltOld = []byte{0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c, 0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0, 0x43, 0x90, 0xa8, 0x99}
  32. quicSalt = []byte{0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3, 0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad, 0xcc, 0xbb, 0x7f, 0x0a}
  33. initialSuite = &cipherSuiteTLS13{
  34. ID: tls.TLS_AES_128_GCM_SHA256,
  35. KeyLen: 16,
  36. AEAD: aeadAESGCMTLS13,
  37. Hash: crypto.SHA256,
  38. }
  39. errNotQuic = errors.New("not quic")
  40. errNotQuicInitial = errors.New("not initial packet")
  41. )
  42. func SniffQUIC(b []byte) (*SniffHeader, error) {
  43. // Crypto data separated across packets
  44. cryptoLen := 0
  45. cryptoData := bytespool.Alloc(int32(len(b)))
  46. defer bytespool.Free(cryptoData)
  47. // Parse QUIC packets
  48. for len(b) > 0 {
  49. buffer := buf.FromBytes(b)
  50. typeByte, err := buffer.ReadByte()
  51. if err != nil {
  52. return nil, errNotQuic
  53. }
  54. isLongHeader := typeByte&0x80 > 0
  55. if !isLongHeader || typeByte&0x40 == 0 {
  56. return nil, errNotQuicInitial
  57. }
  58. vb, err := buffer.ReadBytes(4)
  59. if err != nil {
  60. return nil, errNotQuic
  61. }
  62. versionNumber := binary.BigEndian.Uint32(vb)
  63. if versionNumber != 0 && typeByte&0x40 == 0 {
  64. return nil, errNotQuic
  65. } else if versionNumber != versionDraft29 && versionNumber != version1 {
  66. return nil, errNotQuic
  67. }
  68. packetType := (typeByte & 0x30) >> 4
  69. isQuicInitial := packetType == 0x0
  70. var destConnID []byte
  71. if l, err := buffer.ReadByte(); err != nil {
  72. return nil, errNotQuic
  73. } else if destConnID, err = buffer.ReadBytes(int32(l)); err != nil {
  74. return nil, errNotQuic
  75. }
  76. if l, err := buffer.ReadByte(); err != nil {
  77. return nil, errNotQuic
  78. } else if common.Error2(buffer.ReadBytes(int32(l))) != nil {
  79. return nil, errNotQuic
  80. }
  81. if isQuicInitial { // Only initial packets have token, see https://datatracker.ietf.org/doc/html/rfc9000#section-17.2.2
  82. tokenLen, err := quicvarint.Read(buffer)
  83. if err != nil || tokenLen > uint64(len(b)) {
  84. return nil, errNotQuic
  85. }
  86. if _, err = buffer.ReadBytes(int32(tokenLen)); err != nil {
  87. return nil, errNotQuic
  88. }
  89. }
  90. packetLen, err := quicvarint.Read(buffer)
  91. if err != nil {
  92. return nil, errNotQuic
  93. }
  94. hdrLen := len(b) - int(buffer.Len())
  95. if len(b) < hdrLen+int(packetLen) {
  96. return nil, common.ErrNoClue // Not enough data to read as a QUIC packet. QUIC is UDP-based, so this is unlikely to happen.
  97. }
  98. restPayload := b[hdrLen+int(packetLen):]
  99. if !isQuicInitial { // Skip this packet if it's not initial packet
  100. b = restPayload
  101. continue
  102. }
  103. origPNBytes := make([]byte, 4)
  104. copy(origPNBytes, b[hdrLen:hdrLen+4])
  105. var salt []byte
  106. if versionNumber == version1 {
  107. salt = quicSalt
  108. } else {
  109. salt = quicSaltOld
  110. }
  111. initialSecret := hkdf.Extract(crypto.SHA256.New, destConnID, salt)
  112. secret := hkdfExpandLabel(crypto.SHA256, initialSecret, []byte{}, "client in", crypto.SHA256.Size())
  113. hpKey := hkdfExpandLabel(initialSuite.Hash, secret, []byte{}, "quic hp", initialSuite.KeyLen)
  114. block, err := aes.NewCipher(hpKey)
  115. if err != nil {
  116. return nil, err
  117. }
  118. cache := buf.New()
  119. defer cache.Release()
  120. mask := cache.Extend(int32(block.BlockSize()))
  121. block.Encrypt(mask, b[hdrLen+4:hdrLen+4+16])
  122. b[0] ^= mask[0] & 0xf
  123. for i := range b[hdrLen : hdrLen+4] {
  124. b[hdrLen+i] ^= mask[i+1]
  125. }
  126. packetNumberLength := b[0]&0x3 + 1
  127. if packetNumberLength != 1 {
  128. return nil, errNotQuicInitial
  129. }
  130. var packetNumber uint32
  131. {
  132. n, err := buffer.ReadByte()
  133. if err != nil {
  134. return nil, err
  135. }
  136. packetNumber = uint32(n)
  137. }
  138. extHdrLen := hdrLen + int(packetNumberLength)
  139. copy(b[extHdrLen:hdrLen+4], origPNBytes[packetNumberLength:])
  140. data := b[extHdrLen : int(packetLen)+hdrLen]
  141. key := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic key", 16)
  142. iv := hkdfExpandLabel(crypto.SHA256, secret, []byte{}, "quic iv", 12)
  143. cipher := aeadAESGCMTLS13(key, iv)
  144. nonce := cache.Extend(int32(cipher.NonceSize()))
  145. binary.BigEndian.PutUint64(nonce[len(nonce)-8:], uint64(packetNumber))
  146. decrypted, err := cipher.Open(b[extHdrLen:extHdrLen], nonce, data, b[:extHdrLen])
  147. if err != nil {
  148. return nil, err
  149. }
  150. buffer = buf.FromBytes(decrypted)
  151. for i := 0; !buffer.IsEmpty(); i++ {
  152. frameType := byte(0x0) // Default to PADDING frame
  153. for frameType == 0x0 && !buffer.IsEmpty() {
  154. frameType, _ = buffer.ReadByte()
  155. }
  156. switch frameType {
  157. case 0x00: // PADDING frame
  158. case 0x01: // PING frame
  159. case 0x02, 0x03: // ACK frame
  160. if _, err = quicvarint.Read(buffer); err != nil { // Field: Largest Acknowledged
  161. return nil, io.ErrUnexpectedEOF
  162. }
  163. if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Delay
  164. return nil, io.ErrUnexpectedEOF
  165. }
  166. ackRangeCount, err := quicvarint.Read(buffer) // Field: ACK Range Count
  167. if err != nil {
  168. return nil, io.ErrUnexpectedEOF
  169. }
  170. if _, err = quicvarint.Read(buffer); err != nil { // Field: First ACK Range
  171. return nil, io.ErrUnexpectedEOF
  172. }
  173. for i := 0; i < int(ackRangeCount); i++ { // Field: ACK Range
  174. if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> Gap
  175. return nil, io.ErrUnexpectedEOF
  176. }
  177. if _, err = quicvarint.Read(buffer); err != nil { // Field: ACK Range -> ACK Range Length
  178. return nil, io.ErrUnexpectedEOF
  179. }
  180. }
  181. if frameType == 0x03 {
  182. if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT0 Count
  183. return nil, io.ErrUnexpectedEOF
  184. }
  185. if _, err = quicvarint.Read(buffer); err != nil { // Field: ECN Counts -> ECT1 Count
  186. return nil, io.ErrUnexpectedEOF
  187. }
  188. if _, err = quicvarint.Read(buffer); err != nil { //nolint:misspell // Field: ECN Counts -> ECT-CE Count
  189. return nil, io.ErrUnexpectedEOF
  190. }
  191. }
  192. case 0x06: // CRYPTO frame, we will use this frame
  193. offset, err := quicvarint.Read(buffer) // Field: Offset
  194. if err != nil {
  195. return nil, io.ErrUnexpectedEOF
  196. }
  197. length, err := quicvarint.Read(buffer) // Field: Length
  198. if err != nil || length > uint64(buffer.Len()) {
  199. return nil, io.ErrUnexpectedEOF
  200. }
  201. if cryptoLen < int(offset+length) {
  202. cryptoLen = int(offset + length)
  203. if len(cryptoData) < cryptoLen {
  204. newCryptoData := bytespool.Alloc(int32(cryptoLen))
  205. copy(newCryptoData, cryptoData)
  206. bytespool.Free(cryptoData)
  207. cryptoData = newCryptoData
  208. }
  209. }
  210. if _, err := buffer.Read(cryptoData[offset : offset+length]); err != nil { // Field: Crypto Data
  211. return nil, io.ErrUnexpectedEOF
  212. }
  213. case 0x1c: // CONNECTION_CLOSE frame, only 0x1c is permitted in initial packet
  214. if _, err = quicvarint.Read(buffer); err != nil { // Field: Error Code
  215. return nil, io.ErrUnexpectedEOF
  216. }
  217. if _, err = quicvarint.Read(buffer); err != nil { // Field: Frame Type
  218. return nil, io.ErrUnexpectedEOF
  219. }
  220. length, err := quicvarint.Read(buffer) // Field: Reason Phrase Length
  221. if err != nil {
  222. return nil, io.ErrUnexpectedEOF
  223. }
  224. if _, err := buffer.ReadBytes(int32(length)); err != nil { // Field: Reason Phrase
  225. return nil, io.ErrUnexpectedEOF
  226. }
  227. default:
  228. // Only above frame types are permitted in initial packet.
  229. // See https://www.rfc-editor.org/rfc/rfc9000.html#section-17.2.2-8
  230. return nil, errNotQuicInitial
  231. }
  232. }
  233. tlsHdr := &ptls.SniffHeader{}
  234. err = ptls.ReadClientHello(cryptoData[:cryptoLen], tlsHdr)
  235. if err != nil {
  236. // The crypto data may have not been fully recovered in current packets,
  237. // So we continue to sniff rest packets.
  238. b = restPayload
  239. continue
  240. }
  241. return &SniffHeader{domain: tlsHdr.Domain()}, nil
  242. }
  243. // All payload is parsed as valid QUIC packets, but we need more packets for crypto data to read client hello.
  244. return nil, protocol.ErrProtoNeedMoreData
  245. }
  246. func hkdfExpandLabel(hash crypto.Hash, secret, context []byte, label string, length int) []byte {
  247. b := make([]byte, 3, 3+6+len(label)+1+len(context))
  248. binary.BigEndian.PutUint16(b, uint16(length))
  249. b[2] = uint8(6 + len(label))
  250. b = append(b, []byte("tls13 ")...)
  251. b = append(b, []byte(label)...)
  252. b = b[:3+6+len(label)+1]
  253. b[3+6+len(label)] = uint8(len(context))
  254. b = append(b, context...)
  255. out := make([]byte, length)
  256. n, err := hkdf.Expand(hash.New, secret, b).Read(out)
  257. if err != nil || n != length {
  258. panic("quic: HKDF-Expand-Label invocation failed unexpectedly")
  259. }
  260. return out
  261. }