| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- package congestion
- import (
- "math"
- "time"
- "v2ray.com/core/external/github.com/lucas-clemente/quic-go/internal/protocol"
- "v2ray.com/core/external/github.com/lucas-clemente/quic-go/internal/utils"
- )
- // This cubic implementation is based on the one found in Chromiums's QUIC
- // implementation, in the files net/quic/congestion_control/cubic.{hh,cc}.
- // Constants based on TCP defaults.
- // The following constants are in 2^10 fractions of a second instead of ms to
- // allow a 10 shift right to divide.
- // 1024*1024^3 (first 1024 is from 0.100^3)
- // where 0.100 is 100 ms which is the scaling round trip time.
- const cubeScale = 40
- const cubeCongestionWindowScale = 410
- const cubeFactor protocol.ByteCount = 1 << cubeScale / cubeCongestionWindowScale / protocol.DefaultTCPMSS
- const defaultNumConnections = 2
- // Default Cubic backoff factor
- const beta float32 = 0.7
- // Additional backoff factor when loss occurs in the concave part of the Cubic
- // curve. This additional backoff factor is expected to give up bandwidth to
- // new concurrent flows and speed up convergence.
- const betaLastMax float32 = 0.85
- // Cubic implements the cubic algorithm from TCP
- type Cubic struct {
- clock Clock
- // Number of connections to simulate.
- numConnections int
- // Time when this cycle started, after last loss event.
- epoch time.Time
- // Max congestion window used just before last loss event.
- // Note: to improve fairness to other streams an additional back off is
- // applied to this value if the new value is below our latest value.
- lastMaxCongestionWindow protocol.ByteCount
- // Number of acked bytes since the cycle started (epoch).
- ackedBytesCount protocol.ByteCount
- // TCP Reno equivalent congestion window in packets.
- estimatedTCPcongestionWindow protocol.ByteCount
- // Origin point of cubic function.
- originPointCongestionWindow protocol.ByteCount
- // Time to origin point of cubic function in 2^10 fractions of a second.
- timeToOriginPoint uint32
- // Last congestion window in packets computed by cubic function.
- lastTargetCongestionWindow protocol.ByteCount
- }
- // NewCubic returns a new Cubic instance
- func NewCubic(clock Clock) *Cubic {
- c := &Cubic{
- clock: clock,
- numConnections: defaultNumConnections,
- }
- c.Reset()
- return c
- }
- // Reset is called after a timeout to reset the cubic state
- func (c *Cubic) Reset() {
- c.epoch = time.Time{}
- c.lastMaxCongestionWindow = 0
- c.ackedBytesCount = 0
- c.estimatedTCPcongestionWindow = 0
- c.originPointCongestionWindow = 0
- c.timeToOriginPoint = 0
- c.lastTargetCongestionWindow = 0
- }
- func (c *Cubic) alpha() float32 {
- // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
- // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
- // We derive the equivalent alpha for an N-connection emulation as:
- b := c.beta()
- return 3 * float32(c.numConnections) * float32(c.numConnections) * (1 - b) / (1 + b)
- }
- func (c *Cubic) beta() float32 {
- // kNConnectionBeta is the backoff factor after loss for our N-connection
- // emulation, which emulates the effective backoff of an ensemble of N
- // TCP-Reno connections on a single loss event. The effective multiplier is
- // computed as:
- return (float32(c.numConnections) - 1 + beta) / float32(c.numConnections)
- }
- func (c *Cubic) betaLastMax() float32 {
- // betaLastMax is the additional backoff factor after loss for our
- // N-connection emulation, which emulates the additional backoff of
- // an ensemble of N TCP-Reno connections on a single loss event. The
- // effective multiplier is computed as:
- return (float32(c.numConnections) - 1 + betaLastMax) / float32(c.numConnections)
- }
- // OnApplicationLimited is called on ack arrival when sender is unable to use
- // the available congestion window. Resets Cubic state during quiescence.
- func (c *Cubic) OnApplicationLimited() {
- // When sender is not using the available congestion window, the window does
- // not grow. But to be RTT-independent, Cubic assumes that the sender has been
- // using the entire window during the time since the beginning of the current
- // "epoch" (the end of the last loss recovery period). Since
- // application-limited periods break this assumption, we reset the epoch when
- // in such a period. This reset effectively freezes congestion window growth
- // through application-limited periods and allows Cubic growth to continue
- // when the entire window is being used.
- c.epoch = time.Time{}
- }
- // CongestionWindowAfterPacketLoss computes a new congestion window to use after
- // a loss event. Returns the new congestion window in packets. The new
- // congestion window is a multiplicative decrease of our current window.
- func (c *Cubic) CongestionWindowAfterPacketLoss(currentCongestionWindow protocol.ByteCount) protocol.ByteCount {
- if currentCongestionWindow+protocol.DefaultTCPMSS < c.lastMaxCongestionWindow {
- // We never reached the old max, so assume we are competing with another
- // flow. Use our extra back off factor to allow the other flow to go up.
- c.lastMaxCongestionWindow = protocol.ByteCount(c.betaLastMax() * float32(currentCongestionWindow))
- } else {
- c.lastMaxCongestionWindow = currentCongestionWindow
- }
- c.epoch = time.Time{} // Reset time.
- return protocol.ByteCount(float32(currentCongestionWindow) * c.beta())
- }
- // CongestionWindowAfterAck computes a new congestion window to use after a received ACK.
- // Returns the new congestion window in packets. The new congestion window
- // follows a cubic function that depends on the time passed since last
- // packet loss.
- func (c *Cubic) CongestionWindowAfterAck(
- ackedBytes protocol.ByteCount,
- currentCongestionWindow protocol.ByteCount,
- delayMin time.Duration,
- eventTime time.Time,
- ) protocol.ByteCount {
- c.ackedBytesCount += ackedBytes
- if c.epoch.IsZero() {
- // First ACK after a loss event.
- c.epoch = eventTime // Start of epoch.
- c.ackedBytesCount = ackedBytes // Reset count.
- // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
- c.estimatedTCPcongestionWindow = currentCongestionWindow
- if c.lastMaxCongestionWindow <= currentCongestionWindow {
- c.timeToOriginPoint = 0
- c.originPointCongestionWindow = currentCongestionWindow
- } else {
- c.timeToOriginPoint = uint32(math.Cbrt(float64(cubeFactor * (c.lastMaxCongestionWindow - currentCongestionWindow))))
- c.originPointCongestionWindow = c.lastMaxCongestionWindow
- }
- }
- // Change the time unit from microseconds to 2^10 fractions per second. Take
- // the round trip time in account. This is done to allow us to use shift as a
- // divide operator.
- elapsedTime := int64(eventTime.Add(delayMin).Sub(c.epoch)/time.Microsecond) << 10 / (1000 * 1000)
- // Right-shifts of negative, signed numbers have implementation-dependent
- // behavior, so force the offset to be positive, as is done in the kernel.
- offset := int64(c.timeToOriginPoint) - elapsedTime
- if offset < 0 {
- offset = -offset
- }
- deltaCongestionWindow := protocol.ByteCount(cubeCongestionWindowScale*offset*offset*offset) * protocol.DefaultTCPMSS >> cubeScale
- var targetCongestionWindow protocol.ByteCount
- if elapsedTime > int64(c.timeToOriginPoint) {
- targetCongestionWindow = c.originPointCongestionWindow + deltaCongestionWindow
- } else {
- targetCongestionWindow = c.originPointCongestionWindow - deltaCongestionWindow
- }
- // Limit the CWND increase to half the acked bytes.
- targetCongestionWindow = utils.MinByteCount(targetCongestionWindow, currentCongestionWindow+c.ackedBytesCount/2)
- // Increase the window by approximately Alpha * 1 MSS of bytes every
- // time we ack an estimated tcp window of bytes. For small
- // congestion windows (less than 25), the formula below will
- // increase slightly slower than linearly per estimated tcp window
- // of bytes.
- c.estimatedTCPcongestionWindow += protocol.ByteCount(float32(c.ackedBytesCount) * c.alpha() * float32(protocol.DefaultTCPMSS) / float32(c.estimatedTCPcongestionWindow))
- c.ackedBytesCount = 0
- // We have a new cubic congestion window.
- c.lastTargetCongestionWindow = targetCongestionWindow
- // Compute target congestion_window based on cubic target and estimated TCP
- // congestion_window, use highest (fastest).
- if targetCongestionWindow < c.estimatedTCPcongestionWindow {
- targetCongestionWindow = c.estimatedTCPcongestionWindow
- }
- return targetCongestionWindow
- }
- // SetNumConnections sets the number of emulated connections
- func (c *Cubic) SetNumConnections(n int) {
- c.numConnections = n
- }
|