kcp.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577
  1. // Package kcp - A Fast and Reliable ARQ Protocol
  2. //
  3. // Acknowledgement:
  4. // skywind3000@github for inventing the KCP protocol
  5. // xtaci@github for translating to Golang
  6. package kcp
  7. import (
  8. "github.com/v2ray/v2ray-core/common/alloc"
  9. v2io "github.com/v2ray/v2ray-core/common/io"
  10. "github.com/v2ray/v2ray-core/common/log"
  11. )
  12. const (
  13. IKCP_RTO_NDL = 30 // no delay min rto
  14. IKCP_RTO_MIN = 100 // normal min rto
  15. IKCP_RTO_DEF = 200
  16. IKCP_RTO_MAX = 60000
  17. IKCP_CMD_PUSH = 81 // cmd: push data
  18. IKCP_CMD_ACK = 82 // cmd: ack
  19. IKCP_WND_SND = 32
  20. IKCP_WND_RCV = 32
  21. IKCP_MTU_DEF = 1350
  22. IKCP_ACK_FAST = 3
  23. IKCP_INTERVAL = 100
  24. IKCP_OVERHEAD = 24
  25. IKCP_DEADLINK = 20
  26. IKCP_THRESH_INIT = 2
  27. IKCP_THRESH_MIN = 2
  28. IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
  29. IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
  30. )
  31. func _imin_(a, b uint32) uint32 {
  32. if a <= b {
  33. return a
  34. } else {
  35. return b
  36. }
  37. }
  38. func _imax_(a, b uint32) uint32 {
  39. if a >= b {
  40. return a
  41. } else {
  42. return b
  43. }
  44. }
  45. func _itimediff(later, earlier uint32) int32 {
  46. return (int32)(later - earlier)
  47. }
  48. type State int
  49. const (
  50. StateActive State = 0
  51. StateReadyToClose State = 1
  52. StatePeerClosed State = 2
  53. StateTerminating State = 3
  54. StateTerminated State = 4
  55. )
  56. // KCP defines a single KCP connection
  57. type KCP struct {
  58. conv uint16
  59. state State
  60. stateBeginTime uint32
  61. lastIncomingTime uint32
  62. lastPayloadTime uint32
  63. sendingUpdated bool
  64. receivingUpdated bool
  65. lastPingTime uint32
  66. mtu, mss uint32
  67. snd_una, snd_nxt, rcv_nxt uint32
  68. ts_recent, ts_lastack, ssthresh uint32
  69. rx_rttvar, rx_srtt, rx_rto uint32
  70. snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
  71. current, interval, ts_flush, xmit uint32
  72. updated bool
  73. ts_probe, probe_wait uint32
  74. dead_link, incr uint32
  75. snd_queue *SendingQueue
  76. rcv_queue []*DataSegment
  77. snd_buf []*DataSegment
  78. rcv_buf *ReceivingWindow
  79. acklist *ACKList
  80. fastresend int32
  81. congestionControl bool
  82. output *SegmentWriter
  83. }
  84. // NewKCP create a new kcp control object, 'conv' must equal in two endpoint
  85. // from the same connection.
  86. func NewKCP(conv uint16, mtu uint32, sendingWindowSize uint32, receivingWindowSize uint32, sendingQueueSize uint32, output v2io.Writer) *KCP {
  87. log.Debug("KCP|Core: creating KCP ", conv)
  88. kcp := new(KCP)
  89. kcp.conv = conv
  90. kcp.snd_wnd = sendingWindowSize
  91. kcp.rcv_wnd = receivingWindowSize
  92. kcp.rmt_wnd = IKCP_WND_RCV
  93. kcp.mtu = mtu
  94. kcp.mss = kcp.mtu - DataSegmentOverhead
  95. kcp.rx_rto = IKCP_RTO_DEF
  96. kcp.interval = IKCP_INTERVAL
  97. kcp.ts_flush = IKCP_INTERVAL
  98. kcp.ssthresh = IKCP_THRESH_INIT
  99. kcp.dead_link = IKCP_DEADLINK
  100. kcp.output = NewSegmentWriter(mtu, output)
  101. kcp.rcv_buf = NewReceivingWindow(receivingWindowSize)
  102. kcp.snd_queue = NewSendingQueue(sendingQueueSize)
  103. kcp.acklist = new(ACKList)
  104. kcp.cwnd = kcp.snd_wnd
  105. return kcp
  106. }
  107. func (kcp *KCP) HandleOption(opt SegmentOption) {
  108. if (opt & SegmentOptionClose) == SegmentOptionClose {
  109. kcp.OnPeerClosed()
  110. }
  111. }
  112. func (kcp *KCP) OnPeerClosed() {
  113. if kcp.state == StateReadyToClose {
  114. kcp.state = StateTerminating
  115. kcp.stateBeginTime = kcp.current
  116. }
  117. if kcp.state == StateActive {
  118. kcp.ClearSendQueue()
  119. kcp.state = StatePeerClosed
  120. kcp.stateBeginTime = kcp.current
  121. }
  122. }
  123. func (kcp *KCP) OnClose() {
  124. if kcp.state == StateActive {
  125. kcp.state = StateReadyToClose
  126. kcp.stateBeginTime = kcp.current
  127. }
  128. if kcp.state == StatePeerClosed {
  129. kcp.state = StateTerminating
  130. kcp.stateBeginTime = kcp.current
  131. }
  132. }
  133. // Recv is user/upper level recv: returns size, returns below zero for EAGAIN
  134. func (kcp *KCP) Recv(buffer []byte) (n int) {
  135. if len(kcp.rcv_queue) == 0 {
  136. return -1
  137. }
  138. // merge fragment
  139. count := 0
  140. for _, seg := range kcp.rcv_queue {
  141. dataLen := seg.Data.Len()
  142. if dataLen > len(buffer) {
  143. break
  144. }
  145. copy(buffer, seg.Data.Value)
  146. seg.Release()
  147. buffer = buffer[dataLen:]
  148. n += dataLen
  149. count++
  150. }
  151. kcp.rcv_queue = kcp.rcv_queue[count:]
  152. kcp.DumpReceivingBuf()
  153. return
  154. }
  155. // DumpReceivingBuf moves available data from rcv_buf -> rcv_queue
  156. // @Private
  157. func (kcp *KCP) DumpReceivingBuf() {
  158. for {
  159. seg := kcp.rcv_buf.RemoveFirst()
  160. if seg == nil {
  161. break
  162. }
  163. kcp.rcv_queue = append(kcp.rcv_queue, seg)
  164. kcp.rcv_buf.Advance()
  165. kcp.rcv_nxt++
  166. kcp.receivingUpdated = true
  167. }
  168. }
  169. // Send is user/upper level send, returns below zero for error
  170. func (kcp *KCP) Send(buffer []byte) int {
  171. nBytes := 0
  172. for len(buffer) > 0 && !kcp.snd_queue.IsFull() {
  173. var size int
  174. if len(buffer) > int(kcp.mss) {
  175. size = int(kcp.mss)
  176. } else {
  177. size = len(buffer)
  178. }
  179. seg := &DataSegment{
  180. Data: alloc.NewSmallBuffer().Clear().Append(buffer[:size]),
  181. }
  182. kcp.snd_queue.Push(seg)
  183. buffer = buffer[size:]
  184. nBytes += size
  185. }
  186. return nBytes
  187. }
  188. // https://tools.ietf.org/html/rfc6298
  189. func (kcp *KCP) update_ack(rtt int32) {
  190. var rto uint32 = 0
  191. if kcp.rx_srtt == 0 {
  192. kcp.rx_srtt = uint32(rtt)
  193. kcp.rx_rttvar = uint32(rtt) / 2
  194. } else {
  195. delta := rtt - int32(kcp.rx_srtt)
  196. if delta < 0 {
  197. delta = -delta
  198. }
  199. kcp.rx_rttvar = (3*kcp.rx_rttvar + uint32(delta)) / 4
  200. kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
  201. if kcp.rx_srtt < kcp.interval {
  202. kcp.rx_srtt = kcp.interval
  203. }
  204. }
  205. rto = kcp.rx_srtt + _imax_(kcp.interval, 4*kcp.rx_rttvar)
  206. if rto > IKCP_RTO_MAX {
  207. rto = IKCP_RTO_MAX
  208. }
  209. kcp.rx_rto = rto * 3 / 2
  210. }
  211. func (kcp *KCP) shrink_buf() {
  212. prevUna := kcp.snd_una
  213. if len(kcp.snd_buf) > 0 {
  214. seg := kcp.snd_buf[0]
  215. kcp.snd_una = seg.Number
  216. } else {
  217. kcp.snd_una = kcp.snd_nxt
  218. }
  219. if kcp.snd_una != prevUna {
  220. kcp.sendingUpdated = true
  221. }
  222. }
  223. func (kcp *KCP) parse_ack(sn uint32) {
  224. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  225. return
  226. }
  227. for k, seg := range kcp.snd_buf {
  228. if sn == seg.Number {
  229. kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
  230. seg.Release()
  231. break
  232. }
  233. if _itimediff(sn, seg.Number) < 0 {
  234. break
  235. }
  236. }
  237. }
  238. func (kcp *KCP) parse_fastack(sn uint32) {
  239. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  240. return
  241. }
  242. for _, seg := range kcp.snd_buf {
  243. if _itimediff(sn, seg.Number) < 0 {
  244. break
  245. } else if sn != seg.Number {
  246. seg.ackSkipped++
  247. }
  248. }
  249. }
  250. func (kcp *KCP) HandleReceivingNext(receivingNext uint32) {
  251. count := 0
  252. for _, seg := range kcp.snd_buf {
  253. if _itimediff(receivingNext, seg.Number) > 0 {
  254. seg.Release()
  255. count++
  256. } else {
  257. break
  258. }
  259. }
  260. kcp.snd_buf = kcp.snd_buf[count:]
  261. }
  262. func (kcp *KCP) HandleSendingNext(sendingNext uint32) {
  263. if kcp.acklist.Clear(sendingNext) {
  264. kcp.receivingUpdated = true
  265. }
  266. }
  267. func (kcp *KCP) parse_data(newseg *DataSegment) {
  268. sn := newseg.Number
  269. if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
  270. _itimediff(sn, kcp.rcv_nxt) < 0 {
  271. return
  272. }
  273. idx := sn - kcp.rcv_nxt
  274. if !kcp.rcv_buf.Set(idx, newseg) {
  275. newseg.Release()
  276. }
  277. kcp.DumpReceivingBuf()
  278. }
  279. // Input when you received a low level packet (eg. UDP packet), call it
  280. func (kcp *KCP) Input(data []byte) int {
  281. kcp.lastIncomingTime = kcp.current
  282. var seg ISegment
  283. var maxack uint32
  284. var flag int
  285. for {
  286. seg, data = ReadSegment(data)
  287. if seg == nil {
  288. break
  289. }
  290. switch seg := seg.(type) {
  291. case *DataSegment:
  292. kcp.HandleOption(seg.Opt)
  293. kcp.HandleSendingNext(seg.SendingNext)
  294. kcp.acklist.Add(seg.Number, seg.Timestamp)
  295. kcp.receivingUpdated = true
  296. kcp.parse_data(seg)
  297. kcp.lastPayloadTime = kcp.current
  298. case *ACKSegment:
  299. kcp.HandleOption(seg.Opt)
  300. if kcp.rmt_wnd < seg.ReceivingWindow {
  301. kcp.rmt_wnd = seg.ReceivingWindow
  302. }
  303. kcp.HandleReceivingNext(seg.ReceivingNext)
  304. for i := 0; i < int(seg.Count); i++ {
  305. ts := seg.TimestampList[i]
  306. sn := seg.NumberList[i]
  307. if _itimediff(kcp.current, ts) >= 0 {
  308. kcp.update_ack(_itimediff(kcp.current, ts))
  309. }
  310. kcp.parse_ack(sn)
  311. if flag == 0 {
  312. flag = 1
  313. maxack = sn
  314. } else if _itimediff(sn, maxack) > 0 {
  315. maxack = sn
  316. }
  317. }
  318. kcp.lastPayloadTime = kcp.current
  319. case *CmdOnlySegment:
  320. kcp.HandleOption(seg.Opt)
  321. if seg.Cmd == SegmentCommandTerminated {
  322. if kcp.state == StateActive ||
  323. kcp.state == StateReadyToClose ||
  324. kcp.state == StatePeerClosed {
  325. kcp.state = StateTerminating
  326. kcp.stateBeginTime = kcp.current
  327. } else if kcp.state == StateTerminating {
  328. kcp.state = StateTerminated
  329. kcp.stateBeginTime = kcp.current
  330. }
  331. }
  332. kcp.HandleReceivingNext(seg.ReceivinNext)
  333. kcp.HandleSendingNext(seg.SendingNext)
  334. default:
  335. }
  336. kcp.shrink_buf()
  337. }
  338. if flag != 0 {
  339. kcp.parse_fastack(maxack)
  340. }
  341. return 0
  342. }
  343. // flush pending data
  344. func (kcp *KCP) flush() {
  345. if kcp.state == StateTerminated {
  346. return
  347. }
  348. if kcp.state == StateActive && _itimediff(kcp.current, kcp.lastPayloadTime) >= 30000 {
  349. kcp.OnClose()
  350. }
  351. if kcp.state == StateTerminating {
  352. kcp.output.Write(&CmdOnlySegment{
  353. Conv: kcp.conv,
  354. Cmd: SegmentCommandTerminated,
  355. })
  356. kcp.output.Flush()
  357. if _itimediff(kcp.current, kcp.stateBeginTime) > 8000 {
  358. kcp.state = StateTerminated
  359. kcp.stateBeginTime = kcp.current
  360. }
  361. return
  362. }
  363. if kcp.state == StateReadyToClose && _itimediff(kcp.current, kcp.stateBeginTime) > 15000 {
  364. kcp.state = StateTerminating
  365. kcp.stateBeginTime = kcp.current
  366. }
  367. current := kcp.current
  368. lost := false
  369. // flush acknowledges
  370. //if kcp.receivingUpdated {
  371. ackSeg := kcp.acklist.AsSegment()
  372. if ackSeg != nil {
  373. ackSeg.Conv = kcp.conv
  374. ackSeg.ReceivingWindow = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
  375. ackSeg.ReceivingNext = kcp.rcv_nxt
  376. kcp.output.Write(ackSeg)
  377. kcp.receivingUpdated = false
  378. }
  379. //}
  380. // calculate window size
  381. cwnd := _imin_(kcp.snd_una+kcp.snd_wnd, kcp.rmt_wnd)
  382. if kcp.congestionControl {
  383. cwnd = _imin_(kcp.cwnd, cwnd)
  384. }
  385. for !kcp.snd_queue.IsEmpty() && _itimediff(kcp.snd_nxt, cwnd) < 0 {
  386. seg := kcp.snd_queue.Pop()
  387. seg.Conv = kcp.conv
  388. seg.Number = kcp.snd_nxt
  389. seg.timeout = current
  390. seg.ackSkipped = 0
  391. seg.transmit = 0
  392. kcp.snd_buf = append(kcp.snd_buf, seg)
  393. kcp.snd_nxt++
  394. }
  395. // calculate resent
  396. resent := uint32(kcp.fastresend)
  397. if kcp.fastresend <= 0 {
  398. resent = 0xffffffff
  399. }
  400. // flush data segments
  401. for _, segment := range kcp.snd_buf {
  402. needsend := false
  403. if segment.transmit == 0 {
  404. needsend = true
  405. segment.transmit++
  406. segment.timeout = current + kcp.rx_rto
  407. } else if _itimediff(current, segment.timeout) >= 0 {
  408. needsend = true
  409. segment.transmit++
  410. kcp.xmit++
  411. segment.timeout = current + kcp.rx_rto
  412. lost = true
  413. } else if segment.ackSkipped >= resent {
  414. needsend = true
  415. segment.transmit++
  416. segment.ackSkipped = 0
  417. segment.timeout = current + kcp.rx_rto
  418. lost = true
  419. }
  420. if needsend {
  421. segment.Timestamp = current
  422. segment.SendingNext = kcp.snd_una
  423. segment.Opt = 0
  424. if kcp.state == StateReadyToClose {
  425. segment.Opt = SegmentOptionClose
  426. }
  427. kcp.output.Write(segment)
  428. kcp.sendingUpdated = false
  429. if segment.transmit >= kcp.dead_link {
  430. kcp.state = 0xFFFFFFFF
  431. }
  432. }
  433. }
  434. if kcp.sendingUpdated || kcp.receivingUpdated || _itimediff(kcp.current, kcp.lastPingTime) >= 5000 {
  435. seg := &CmdOnlySegment{
  436. Conv: kcp.conv,
  437. Cmd: SegmentCommandPing,
  438. ReceivinNext: kcp.rcv_nxt,
  439. SendingNext: kcp.snd_una,
  440. }
  441. if kcp.state == StateReadyToClose {
  442. seg.Opt = SegmentOptionClose
  443. }
  444. kcp.output.Write(seg)
  445. kcp.lastPingTime = kcp.current
  446. kcp.sendingUpdated = false
  447. kcp.receivingUpdated = false
  448. }
  449. // flash remain segments
  450. kcp.output.Flush()
  451. if kcp.congestionControl {
  452. if lost {
  453. kcp.cwnd = 3 * kcp.cwnd / 4
  454. } else {
  455. kcp.cwnd += kcp.cwnd / 4
  456. }
  457. if kcp.cwnd < 4 {
  458. kcp.cwnd = 4
  459. }
  460. if kcp.cwnd > kcp.snd_wnd {
  461. kcp.cwnd = kcp.snd_wnd
  462. }
  463. }
  464. }
  465. // Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
  466. // ikcp_check when to call it again (without ikcp_input/_send calling).
  467. // 'current' - current timestamp in millisec.
  468. func (kcp *KCP) Update(current uint32) {
  469. var slap int32
  470. kcp.current = current
  471. if !kcp.updated {
  472. kcp.updated = true
  473. kcp.ts_flush = kcp.current
  474. }
  475. slap = _itimediff(kcp.current, kcp.ts_flush)
  476. if slap >= 10000 || slap < -10000 {
  477. kcp.ts_flush = kcp.current
  478. slap = 0
  479. }
  480. if slap >= 0 {
  481. kcp.ts_flush += kcp.interval
  482. if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
  483. kcp.ts_flush = kcp.current + kcp.interval
  484. }
  485. kcp.flush()
  486. }
  487. }
  488. // NoDelay options
  489. // fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
  490. // nodelay: 0:disable(default), 1:enable
  491. // interval: internal update timer interval in millisec, default is 100ms
  492. // resend: 0:disable fast resend(default), 1:enable fast resend
  493. // nc: 0:normal congestion control(default), 1:disable congestion control
  494. func (kcp *KCP) NoDelay(interval uint32, resend int, congestionControl bool) int {
  495. kcp.interval = interval
  496. if resend >= 0 {
  497. kcp.fastresend = int32(resend)
  498. }
  499. kcp.congestionControl = congestionControl
  500. return 0
  501. }
  502. // WaitSnd gets how many packet is waiting to be sent
  503. func (kcp *KCP) WaitSnd() uint32 {
  504. return uint32(len(kcp.snd_buf)) + kcp.snd_queue.Len()
  505. }
  506. func (this *KCP) ClearSendQueue() {
  507. this.snd_queue.Clear()
  508. for _, seg := range this.snd_buf {
  509. seg.Release()
  510. }
  511. this.snd_buf = nil
  512. }