kcp.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. // Package kcp - A Fast and Reliable ARQ Protocol
  2. //
  3. // Acknowledgement:
  4. // skywind3000@github for inventing the KCP protocol
  5. // xtaci@github for translating to Golang
  6. package kcp
  7. import (
  8. "github.com/v2ray/v2ray-core/common/alloc"
  9. v2io "github.com/v2ray/v2ray-core/common/io"
  10. "github.com/v2ray/v2ray-core/common/log"
  11. )
  12. const (
  13. IKCP_RTO_NDL = 30 // no delay min rto
  14. IKCP_RTO_MIN = 100 // normal min rto
  15. IKCP_RTO_DEF = 200
  16. IKCP_RTO_MAX = 60000
  17. IKCP_CMD_PUSH = 81 // cmd: push data
  18. IKCP_CMD_ACK = 82 // cmd: ack
  19. IKCP_WND_SND = 32
  20. IKCP_WND_RCV = 32
  21. IKCP_MTU_DEF = 1350
  22. IKCP_ACK_FAST = 3
  23. IKCP_INTERVAL = 100
  24. IKCP_OVERHEAD = 24
  25. IKCP_DEADLINK = 20
  26. IKCP_THRESH_INIT = 2
  27. IKCP_THRESH_MIN = 2
  28. IKCP_PROBE_INIT = 7000 // 7 secs to probe window size
  29. IKCP_PROBE_LIMIT = 120000 // up to 120 secs to probe window
  30. )
  31. func _imin_(a, b uint32) uint32 {
  32. if a <= b {
  33. return a
  34. } else {
  35. return b
  36. }
  37. }
  38. func _imax_(a, b uint32) uint32 {
  39. if a >= b {
  40. return a
  41. } else {
  42. return b
  43. }
  44. }
  45. func _itimediff(later, earlier uint32) int32 {
  46. return (int32)(later - earlier)
  47. }
  48. type State int
  49. const (
  50. StateActive State = 0
  51. StateReadyToClose State = 1
  52. StatePeerClosed State = 2
  53. StateTerminating State = 3
  54. StateTerminated State = 4
  55. )
  56. // KCP defines a single KCP connection
  57. type KCP struct {
  58. conv uint16
  59. state State
  60. stateBeginTime uint32
  61. lastIncomingTime uint32
  62. sendingUpdated bool
  63. receivingUpdated bool
  64. lastPingTime uint32
  65. mtu, mss uint32
  66. snd_una, snd_nxt, rcv_nxt uint32
  67. ts_recent, ts_lastack, ssthresh uint32
  68. rx_rttvar, rx_srtt, rx_rto uint32
  69. snd_wnd, rcv_wnd, rmt_wnd, cwnd, probe uint32
  70. current, interval, ts_flush, xmit uint32
  71. updated bool
  72. ts_probe, probe_wait uint32
  73. dead_link, incr uint32
  74. snd_queue *SendingQueue
  75. rcv_queue []*DataSegment
  76. snd_buf []*DataSegment
  77. rcv_buf *ReceivingWindow
  78. acklist *ACKList
  79. fastresend int32
  80. congestionControl bool
  81. output *SegmentWriter
  82. }
  83. // NewKCP create a new kcp control object, 'conv' must equal in two endpoint
  84. // from the same connection.
  85. func NewKCP(conv uint16, mtu uint32, sendingWindowSize uint32, receivingWindowSize uint32, sendingQueueSize uint32, output v2io.Writer) *KCP {
  86. log.Debug("KCP|Core: creating KCP ", conv)
  87. kcp := new(KCP)
  88. kcp.conv = conv
  89. kcp.snd_wnd = sendingWindowSize
  90. kcp.rcv_wnd = receivingWindowSize
  91. kcp.rmt_wnd = IKCP_WND_RCV
  92. kcp.mtu = mtu
  93. kcp.mss = kcp.mtu - DataSegmentOverhead
  94. kcp.rx_rto = IKCP_RTO_DEF
  95. kcp.interval = IKCP_INTERVAL
  96. kcp.ts_flush = IKCP_INTERVAL
  97. kcp.ssthresh = IKCP_THRESH_INIT
  98. kcp.dead_link = IKCP_DEADLINK
  99. kcp.output = NewSegmentWriter(mtu, output)
  100. kcp.rcv_buf = NewReceivingWindow(receivingWindowSize)
  101. kcp.snd_queue = NewSendingQueue(sendingQueueSize)
  102. kcp.acklist = new(ACKList)
  103. return kcp
  104. }
  105. func (kcp *KCP) HandleOption(opt SegmentOption) {
  106. if (opt & SegmentOptionClose) == SegmentOptionClose {
  107. kcp.OnPeerClosed()
  108. }
  109. }
  110. func (kcp *KCP) OnPeerClosed() {
  111. if kcp.state == StateReadyToClose {
  112. kcp.state = StateTerminating
  113. kcp.stateBeginTime = kcp.current
  114. }
  115. if kcp.state == StateActive {
  116. kcp.ClearSendQueue()
  117. kcp.state = StatePeerClosed
  118. kcp.stateBeginTime = kcp.current
  119. }
  120. }
  121. func (kcp *KCP) OnClose() {
  122. if kcp.state == StateActive {
  123. kcp.state = StateReadyToClose
  124. kcp.stateBeginTime = kcp.current
  125. }
  126. if kcp.state == StatePeerClosed {
  127. kcp.state = StateTerminating
  128. kcp.stateBeginTime = kcp.current
  129. }
  130. }
  131. // Recv is user/upper level recv: returns size, returns below zero for EAGAIN
  132. func (kcp *KCP) Recv(buffer []byte) (n int) {
  133. if len(kcp.rcv_queue) == 0 {
  134. return -1
  135. }
  136. // merge fragment
  137. count := 0
  138. for _, seg := range kcp.rcv_queue {
  139. dataLen := seg.Data.Len()
  140. if dataLen > len(buffer) {
  141. break
  142. }
  143. copy(buffer, seg.Data.Value)
  144. seg.Release()
  145. buffer = buffer[dataLen:]
  146. n += dataLen
  147. count++
  148. }
  149. kcp.rcv_queue = kcp.rcv_queue[count:]
  150. kcp.DumpReceivingBuf()
  151. return
  152. }
  153. // DumpReceivingBuf moves available data from rcv_buf -> rcv_queue
  154. // @Private
  155. func (kcp *KCP) DumpReceivingBuf() {
  156. for {
  157. seg := kcp.rcv_buf.RemoveFirst()
  158. if seg == nil {
  159. break
  160. }
  161. kcp.rcv_queue = append(kcp.rcv_queue, seg)
  162. kcp.rcv_buf.Advance()
  163. kcp.rcv_nxt++
  164. }
  165. }
  166. // Send is user/upper level send, returns below zero for error
  167. func (kcp *KCP) Send(buffer []byte) int {
  168. nBytes := 0
  169. for len(buffer) > 0 && !kcp.snd_queue.IsFull() {
  170. var size int
  171. if len(buffer) > int(kcp.mss) {
  172. size = int(kcp.mss)
  173. } else {
  174. size = len(buffer)
  175. }
  176. seg := &DataSegment{
  177. Data: alloc.NewSmallBuffer().Clear().Append(buffer[:size]),
  178. }
  179. kcp.snd_queue.Push(seg)
  180. buffer = buffer[size:]
  181. nBytes += size
  182. }
  183. return nBytes
  184. }
  185. // https://tools.ietf.org/html/rfc6298
  186. func (kcp *KCP) update_ack(rtt int32) {
  187. var rto uint32 = 0
  188. if kcp.rx_srtt == 0 {
  189. kcp.rx_srtt = uint32(rtt)
  190. kcp.rx_rttvar = uint32(rtt) / 2
  191. } else {
  192. delta := rtt - int32(kcp.rx_srtt)
  193. if delta < 0 {
  194. delta = -delta
  195. }
  196. kcp.rx_rttvar = (3*kcp.rx_rttvar + uint32(delta)) / 4
  197. kcp.rx_srtt = (7*kcp.rx_srtt + uint32(rtt)) / 8
  198. if kcp.rx_srtt < kcp.interval {
  199. kcp.rx_srtt = kcp.interval
  200. }
  201. }
  202. rto = kcp.rx_srtt + _imax_(kcp.interval, 4*kcp.rx_rttvar)
  203. if rto > IKCP_RTO_MAX {
  204. rto = IKCP_RTO_MAX
  205. }
  206. kcp.rx_rto = rto * 3 / 2
  207. }
  208. func (kcp *KCP) shrink_buf() {
  209. prevUna := kcp.snd_una
  210. if len(kcp.snd_buf) > 0 {
  211. seg := kcp.snd_buf[0]
  212. kcp.snd_una = seg.Number
  213. } else {
  214. kcp.snd_una = kcp.snd_nxt
  215. }
  216. if kcp.snd_una != prevUna {
  217. kcp.sendingUpdated = true
  218. }
  219. }
  220. func (kcp *KCP) parse_ack(sn uint32) {
  221. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  222. return
  223. }
  224. for k, seg := range kcp.snd_buf {
  225. if sn == seg.Number {
  226. kcp.snd_buf = append(kcp.snd_buf[:k], kcp.snd_buf[k+1:]...)
  227. seg.Release()
  228. break
  229. }
  230. if _itimediff(sn, seg.Number) < 0 {
  231. break
  232. }
  233. }
  234. }
  235. func (kcp *KCP) parse_fastack(sn uint32) {
  236. if _itimediff(sn, kcp.snd_una) < 0 || _itimediff(sn, kcp.snd_nxt) >= 0 {
  237. return
  238. }
  239. for _, seg := range kcp.snd_buf {
  240. if _itimediff(sn, seg.Number) < 0 {
  241. break
  242. } else if sn != seg.Number {
  243. seg.ackSkipped++
  244. }
  245. }
  246. }
  247. func (kcp *KCP) HandleReceivingNext(receivingNext uint32) {
  248. count := 0
  249. for _, seg := range kcp.snd_buf {
  250. if _itimediff(receivingNext, seg.Number) > 0 {
  251. seg.Release()
  252. count++
  253. } else {
  254. break
  255. }
  256. }
  257. kcp.snd_buf = kcp.snd_buf[count:]
  258. }
  259. func (kcp *KCP) HandleSendingNext(sendingNext uint32) {
  260. kcp.acklist.Clear(sendingNext)
  261. kcp.receivingUpdated = true
  262. }
  263. func (kcp *KCP) parse_data(newseg *DataSegment) {
  264. sn := newseg.Number
  265. if _itimediff(sn, kcp.rcv_nxt+kcp.rcv_wnd) >= 0 ||
  266. _itimediff(sn, kcp.rcv_nxt) < 0 {
  267. return
  268. }
  269. idx := sn - kcp.rcv_nxt
  270. if !kcp.rcv_buf.Set(idx, newseg) {
  271. newseg.Release()
  272. }
  273. kcp.DumpReceivingBuf()
  274. }
  275. // Input when you received a low level packet (eg. UDP packet), call it
  276. func (kcp *KCP) Input(data []byte) int {
  277. kcp.lastIncomingTime = kcp.current
  278. var seg ISegment
  279. var maxack uint32
  280. var flag int
  281. for {
  282. seg, data = ReadSegment(data)
  283. if seg == nil {
  284. break
  285. }
  286. switch seg := seg.(type) {
  287. case *DataSegment:
  288. kcp.HandleOption(seg.Opt)
  289. kcp.HandleSendingNext(seg.SendingNext)
  290. kcp.shrink_buf()
  291. kcp.acklist.Add(seg.Number, seg.Timestamp)
  292. kcp.parse_data(seg)
  293. case *ACKSegment:
  294. kcp.HandleOption(seg.Opt)
  295. if kcp.rmt_wnd < seg.ReceivingWindow {
  296. kcp.rmt_wnd = seg.ReceivingWindow
  297. }
  298. kcp.HandleReceivingNext(seg.ReceivingNext)
  299. for i := 0; i < int(seg.Count); i++ {
  300. ts := seg.TimestampList[i]
  301. sn := seg.NumberList[i]
  302. if _itimediff(kcp.current, ts) >= 0 {
  303. kcp.update_ack(_itimediff(kcp.current, ts))
  304. }
  305. kcp.parse_ack(sn)
  306. if flag == 0 {
  307. flag = 1
  308. maxack = sn
  309. } else if _itimediff(sn, maxack) > 0 {
  310. maxack = sn
  311. }
  312. }
  313. kcp.shrink_buf()
  314. case *CmdOnlySegment:
  315. kcp.HandleOption(seg.Opt)
  316. if seg.Cmd == SegmentCommandTerminated {
  317. if kcp.state == StateActive ||
  318. kcp.state == StateReadyToClose ||
  319. kcp.state == StatePeerClosed {
  320. kcp.state = StateTerminating
  321. kcp.stateBeginTime = kcp.current
  322. } else if kcp.state == StateTerminating {
  323. kcp.state = StateTerminated
  324. kcp.stateBeginTime = kcp.current
  325. }
  326. }
  327. kcp.HandleReceivingNext(seg.ReceivinNext)
  328. kcp.HandleSendingNext(seg.SendingNext)
  329. default:
  330. }
  331. }
  332. if flag != 0 {
  333. kcp.parse_fastack(maxack)
  334. }
  335. return 0
  336. }
  337. // flush pending data
  338. func (kcp *KCP) flush() {
  339. if kcp.state == StateTerminated {
  340. return
  341. }
  342. if kcp.state == StateActive && _itimediff(kcp.current, kcp.lastIncomingTime) >= 30000 {
  343. kcp.OnClose()
  344. }
  345. if kcp.state == StateTerminating {
  346. kcp.output.Write(&CmdOnlySegment{
  347. Conv: kcp.conv,
  348. Cmd: SegmentCommandTerminated,
  349. })
  350. kcp.output.Flush()
  351. if _itimediff(kcp.current, kcp.stateBeginTime) > 8000 {
  352. kcp.state = StateTerminated
  353. kcp.stateBeginTime = kcp.current
  354. }
  355. return
  356. }
  357. if kcp.state == StateReadyToClose && _itimediff(kcp.current, kcp.stateBeginTime) > 15000 {
  358. kcp.state = StateTerminating
  359. kcp.stateBeginTime = kcp.current
  360. }
  361. current := kcp.current
  362. //lost := false
  363. //var seg Segment
  364. //seg.conv = kcp.conv
  365. //seg.cmd = IKCP_CMD_ACK
  366. //seg.wnd = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
  367. //seg.una = kcp.rcv_nxt
  368. // flush acknowledges
  369. ackSeg := kcp.acklist.AsSegment()
  370. if ackSeg != nil {
  371. ackSeg.Conv = kcp.conv
  372. ackSeg.ReceivingWindow = uint32(kcp.rcv_nxt + kcp.rcv_wnd)
  373. ackSeg.ReceivingNext = kcp.rcv_nxt
  374. kcp.output.Write(ackSeg)
  375. kcp.receivingUpdated = false
  376. }
  377. // calculate window size
  378. cwnd := _imin_(kcp.snd_una+kcp.snd_wnd, kcp.rmt_wnd)
  379. if kcp.congestionControl {
  380. cwnd = _imin_(kcp.cwnd, cwnd)
  381. }
  382. for !kcp.snd_queue.IsEmpty() && _itimediff(kcp.snd_nxt, cwnd) < 0 {
  383. seg := kcp.snd_queue.Pop()
  384. seg.Conv = kcp.conv
  385. seg.Number = kcp.snd_nxt
  386. seg.timeout = current
  387. seg.ackSkipped = 0
  388. seg.transmit = 0
  389. kcp.snd_buf = append(kcp.snd_buf, seg)
  390. kcp.snd_nxt++
  391. }
  392. // calculate resent
  393. resent := uint32(kcp.fastresend)
  394. if kcp.fastresend <= 0 {
  395. resent = 0xffffffff
  396. }
  397. // flush data segments
  398. for _, segment := range kcp.snd_buf {
  399. needsend := false
  400. if segment.transmit == 0 {
  401. needsend = true
  402. segment.transmit++
  403. segment.timeout = current + kcp.rx_rto
  404. } else if _itimediff(current, segment.timeout) >= 0 {
  405. needsend = true
  406. segment.transmit++
  407. kcp.xmit++
  408. segment.timeout = current + kcp.rx_rto
  409. //lost = true
  410. } else if segment.ackSkipped >= resent {
  411. needsend = true
  412. segment.transmit++
  413. segment.ackSkipped = 0
  414. segment.timeout = current + kcp.rx_rto
  415. }
  416. if needsend {
  417. segment.Timestamp = current
  418. segment.SendingNext = kcp.snd_una
  419. segment.Opt = 0
  420. if kcp.state == StateReadyToClose {
  421. segment.Opt = SegmentOptionClose
  422. }
  423. kcp.output.Write(segment)
  424. kcp.sendingUpdated = false
  425. if segment.transmit >= kcp.dead_link {
  426. kcp.state = 0xFFFFFFFF
  427. }
  428. }
  429. }
  430. if kcp.sendingUpdated || kcp.receivingUpdated || _itimediff(kcp.current, kcp.lastPingTime) >= 5000 {
  431. seg := &CmdOnlySegment{
  432. Conv: kcp.conv,
  433. Cmd: SegmentCommandPing,
  434. ReceivinNext: kcp.rcv_nxt,
  435. SendingNext: kcp.snd_una,
  436. }
  437. if kcp.state == StateReadyToClose {
  438. seg.Opt = SegmentOptionClose
  439. }
  440. kcp.output.Write(seg)
  441. kcp.lastPingTime = kcp.current
  442. kcp.sendingUpdated = false
  443. kcp.receivingUpdated = false
  444. }
  445. // flash remain segments
  446. kcp.output.Flush()
  447. // update ssthresh
  448. // rate halving, https://tools.ietf.org/html/rfc6937
  449. /*
  450. if change != 0 {
  451. inflight := kcp.snd_nxt - kcp.snd_una
  452. kcp.ssthresh = inflight / 2
  453. if kcp.ssthresh < IKCP_THRESH_MIN {
  454. kcp.ssthresh = IKCP_THRESH_MIN
  455. }
  456. kcp.cwnd = kcp.ssthresh + resent
  457. kcp.incr = kcp.cwnd * kcp.mss
  458. }*/
  459. // congestion control, https://tools.ietf.org/html/rfc5681
  460. /*
  461. if lost {
  462. kcp.ssthresh = cwnd / 2
  463. if kcp.ssthresh < IKCP_THRESH_MIN {
  464. kcp.ssthresh = IKCP_THRESH_MIN
  465. }
  466. kcp.cwnd = 1
  467. kcp.incr = kcp.mss
  468. }
  469. if kcp.cwnd < 1 {
  470. kcp.cwnd = 1
  471. kcp.incr = kcp.mss
  472. }*/
  473. }
  474. // Update updates state (call it repeatedly, every 10ms-100ms), or you can ask
  475. // ikcp_check when to call it again (without ikcp_input/_send calling).
  476. // 'current' - current timestamp in millisec.
  477. func (kcp *KCP) Update(current uint32) {
  478. var slap int32
  479. kcp.current = current
  480. if !kcp.updated {
  481. kcp.updated = true
  482. kcp.ts_flush = kcp.current
  483. }
  484. slap = _itimediff(kcp.current, kcp.ts_flush)
  485. if slap >= 10000 || slap < -10000 {
  486. kcp.ts_flush = kcp.current
  487. slap = 0
  488. }
  489. if slap >= 0 {
  490. kcp.ts_flush += kcp.interval
  491. if _itimediff(kcp.current, kcp.ts_flush) >= 0 {
  492. kcp.ts_flush = kcp.current + kcp.interval
  493. }
  494. kcp.flush()
  495. }
  496. }
  497. // NoDelay options
  498. // fastest: ikcp_nodelay(kcp, 1, 20, 2, 1)
  499. // nodelay: 0:disable(default), 1:enable
  500. // interval: internal update timer interval in millisec, default is 100ms
  501. // resend: 0:disable fast resend(default), 1:enable fast resend
  502. // nc: 0:normal congestion control(default), 1:disable congestion control
  503. func (kcp *KCP) NoDelay(interval uint32, resend int, congestionControl bool) int {
  504. kcp.interval = interval
  505. if resend >= 0 {
  506. kcp.fastresend = int32(resend)
  507. }
  508. kcp.congestionControl = congestionControl
  509. return 0
  510. }
  511. // WaitSnd gets how many packet is waiting to be sent
  512. func (kcp *KCP) WaitSnd() uint32 {
  513. return uint32(len(kcp.snd_buf)) + kcp.snd_queue.Len()
  514. }
  515. func (this *KCP) ClearSendQueue() {
  516. this.snd_queue.Clear()
  517. for _, seg := range this.snd_buf {
  518. seg.Release()
  519. }
  520. this.snd_buf = nil
  521. }